Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus.

نویسندگان

  • J L Casas López
  • J A Sánchez Pérez
  • J M Fernández Sevilla
  • E M Rodríguez Porcel
  • Y Chisti
چکیده

Pellet growth of Aspergillus terreus ATCC 20542 in submerged batch fermentations in stirred bioreactors was used to examine the effects of agitation (impeller tip speed u(t) of 1.01-2.71 ms(-1)) and aeration regimens (air or an oxygen-enriched mixture containing 80% oxygen and 20% nitrogen by volume) on the fungal pellet morphology, broth rheology and lovastatin production. The agitation speed and aeration methods used did not affect the biomass production profiles, but significantly influenced pellet morphology, broth rheology and the lovastatin titers. Pellets of approximately 1200 microm initial diameter were reduced to a final stable size of approximately 900 microm when the agitation intensity was >/=600 rpm (u(t)>/=2.03 ms(-1)). A stable pellet diameter of approximately 2500 microm could be attained in less intensely agitated cultures. These large fluffy pellets produced high lovastatin titers when aerated with oxygen-enriched gas but not with air. Much smaller pellets obtained under highly agitated conditions did not attain high lovastatin productivity even in an oxygen-enriched atmosphere. This suggests that both an upper limit on agitation intensity and a high level of dissolved oxygen are essential for attaining high titers of lovastatin. Pellet size in the bioreactor correlated equally well with the specific energy dissipation rate and the energy dissipation circulation function. The latter took into account the frequency of passage of the pellets through the high shear regions of the impellers. Pellets that gave high lovastatin titers produced highly shear thinning cultivation broths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of pellet morphology on broth rheology in fermentations of Aspergillus terreus

Effects of pellet morphology on broth rheology are reported for pelleted submerged cultures of the lovastatin producing filamentous fungus Aspergillus terreus, growing in fluidized bed and stirred tank bioreactors. The pellet diameter and compactness were affected by the agitation intensity of the broth; however, the total biomass productivity was not affected. In fluidized beds and stirred tan...

متن کامل

Influence of oxygen on lovastatin biosynthesis by Aspergillus terreus ATCC 20542 quantitatively studied on the level of individual pellets

Despite oxygen is believed to be the most important environmental factor for any aerobic microbial process, the quantitative studies of its influence on growth and metabolite formation on the level of individual pellets formed by filamentous fungi were seldom performed. Never was it made for lovastatin producer Aspergillus terreus ATCC20542. Thus, this work is a quantitative study of oxygen tra...

متن کامل

Fermentation optimization for the production of lovastatin by Aspergillus terreus: use of response surface methodology

A Box–Behnken experimental design was used to investigate the effects of five factors—ie oxygen content in the gas phase; concentrations of C, N and P; and fermentation time—on the concentrations of biomass and lovastatin produced in batch cultures of Aspergillus terreus. The values of the various factors in the experiment ranged widely, as follows: 20–80% (v/v) oxygen in the aeration gas; 8–48...

متن کامل

Production of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective

Aspergillus terreus is a textbook example of an industrially relevant filamentous fungus. It is used for the biotechnological production of two valuable metabolites, namely itaconic acid and lovastatin. Itaconic acid serves as a precursor in polymer industry, whereas lovastatin found its place in the pharmaceutical market as a cholesterol-lowering statin drug and a precursor for semisynthetic s...

متن کامل

Effect of butyrolactone I on the producing fungus, Aspergillus terreus.

Butyrolactone I [alpha-oxo-beta-(p-hydroxyphenyl)-gamma-(p-hydroxy-m-3, 3-dimethylallyl-benzyl)-gamma-methoxycarbonyl-gamma-butyrolactone] is produced as a secondary metabolite by Aspergillus terreus. Because small butyrolactone-containing molecules act as self-regulating factors in some bacteria, the effects of butyrolactone I on the producing organism were studied; specifically, changes in mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biotechnology

دوره 116 1  شماره 

صفحات  -

تاریخ انتشار 2005